Invisible by Design
 How Congress Risks Hiding the Performance of Disadvantaged Students

By Scott Sargrad, Max Marchitello, and Robert Hanna October 30, 2015

Introduction and summary

This past July, for the first time in 15 years, both the U.S. Senate and the U.S. House of Representatives passed bills to reauthorize the Elementary and Secondary Education Act, or ESEA - currently known as the No Child Left Behind Act, or NCLB. ${ }^{1}$ And with House Speaker John Boehner (R-OH) and Secretary of Education Arne Duncan both announcing in September that they will step down from their respective posts, the pressure to pass a new law quickly has increased. ${ }^{2}$ Even though bills have passed both chambers of Congress, the conference committee must resolve several important policy differences before a new law gets to the president's desk. ${ }^{3}$ Most importantly, Congress must decide how to ensure that states, districts, and schools are held accountable for improving outcomes for all students.

It is clear that more than 13 years after being signed into law, the NCLB's ${ }^{4}$ approach to accountability is too prescriptive, has led to too many schools identified as failing, and has prescribed the same remedies for all schools regardless of their actual challenges. But the solution to these problems is to build on, rather than ignore, the lessons of the NCLB. For example, states need the flexibility to evaluate school performance across multiple academic indicators-not just test scores-and to focus resources in the schools that need the most help.

While Congress is right to move away from the one-size-fits-all approach of the NCLB, both the Senate and House proposals currently swing too far in the other direction. These proposals give states nearly unlimited discretion in determining how much student achievement figures into their accountability systems. ${ }^{5}$ Even worse, it would be entirely up to individual states to decide whether anything should be done to better support schools in which all students or subgroups of students are persistently underperforming.

Already, the dangers of rolling back the federal role in schools is evident in Illinois' newly proposed state accountability and rating system. ${ }^{6}$ In this system, only 30 percent of a school's performance is based on academic factors. ${ }^{7}$ In other words, schools can receive high ratings even if students are not meeting expectations or making academic progress. This approach also permits schools to receive high ratings despite large and persistent achievement gaps.

In practice, Illinois' proposed plan would allow schools to overlook the academic performance of struggling students and groups of students who are traditionally underserved. And when these schools still receive high ratings despite not serving all students well, the state and districts do not need to take any action to target resources and supports to improve achievement and close gaps. This approach ignores history and rejects common sense: Gaps in achievement between historically disadvantaged students and their peers are long-standing and significant, and simply ignoring these gaps will not make them go away. If Congress reauthorizes the ESEA without provisions that ensure the identification of, and meaningful support for, schools in which subgroups are not making academic progress, it is very likely that state plans such as Illinois' will become commonplace.

To demonstrate the importance of strong accountability for the performance of all groups of students, the Center for American Progress analyzed the depth and breadth of achievement gaps across the country. Specifically, we looked at differences in performance between entire schools and groups of students within those schools. We found that these differences are often large and that they occur in all kinds of schools and in all kinds of states.

Specifically, we found:

1. In top-performing schools, historically disadvantaged students perform worse relative to their school's overall performance than in lower-performing schools.
2. Approximately 1.2 million black students, 1 million Hispanic students, 2.8 million students with disabilities, 1.5 million students with limited English proficiency, and 2.8 million low-income students attend schools where their performance is more than 10 percentage points lower than their school's overall performance.
3. States with smaller black and Hispanic populations often have high proportions of these students in schools where their performance is substantially lower than their school's overall performance.

CAP used the 2012-13 school-level proficiency rates from the U.S. Department of Education to compare the proficiency rates of student subgroups with the overall performance of their school. We identify schools as having achievement gaps if they have gaps in at least one subject area. See the Appendix for our complete methodology.

CAP believes that Congress should provide states with the flexibility to establish an accountability system that takes into account the performance and progress of all students and subgroups of students across multiple academic indicators. With this flexibility, however, the federal government should require states or districts to take action in schools where all students or groups of students are persistently not making progress, with the most rigorous interventions focused on the schools and students that are furthest behind. In this model, states can create systems to meet the needs of their students without being permitted to hide behind average school performance.

It is important to note that this report does not account for school progress or student growth over time. These measures are key to state accountability systems, since they help determine whether all groups of students are making progress, achievement gaps are closing, and students are making at least a year's worth of growth. Additionally, simply using an absolute measure of the achievement gap is not enough for an accountability system: Gaps might close, but student achievement could still remain low. Although this analysis presents only a snapshot of achievement gaps in the United States, the findings make clear that these gaps remain an urgent problem. It is also clear that subgroup accountability must be addressed in the ESEA. Yet given that achievement gaps are present in schools that are both high- and low-performing overall, a policy that restricts subgroup accountability to an arbitrary number or a percentage of schoolssuch as only the lowest-performing schools in a state—is not enough to address existing achievement disparities.

In top-performing schools, disadvantaged students perform worse relative to their peers than in lower-performing schools

Our analysis shows that achievement gaps between subgroups of students and their peers are not a problem that is unique to low-performing schools. In fact, the schools with the highest proficiency rates in the United States have larger achievement gaps than those in the schools with the lowest proficiency rates.

In the top-performing quartile of schools based on overall achievement, the math proficiency rate for black students is around 15 percentage points below the school's overall proficiency rate. In the bottom quartile of schools, the achievement gap for black students is somewhat smaller—around 10 points. While the gaps for Hispanic students in math are smaller overall, the achievement gap is also larger in higher-performing schools. ${ }^{8}$ When looking across states, we find that in 42 states, the gaps for Hispanic students in higher-performing schools are larger than the gaps for Hispanic students in lower-performing schools. For black students, that pattern holds in 39 states. ${ }^{9}$ See the sidebar for similar analyses for other subgroups.

In other words, ensuring that all groups of students meet state academic expectations cannot be achieved by only looking at the lowest-performing schools. Large and significant proficiency gaps are found across the country in both high- and low-performing schools, and in high-performing schools, disadvantaged students are more likely to be further behind their peers.

TABLE 1
States with the largest disparities between highest- and lowest-performing schools

Achievement gaps in highest- and lowest-performing study schools, by state and racial subgroup

Black students				
State	Math profi Low-performing schools	ncy gaps in: High-performing schools	English language Low-performing schools	proficiency gaps in: High-performing schools
Wisconsin	-9	-32	-5	-27
Vermont	-8	-41	-24	-34
Missouri	-10	-27	-9	-26
North Carolina	-8	-25	-8	-23
Kentucky	-8	-24	-8	-23
Hispanic students				
State	Math profi Low-performing schools	ncy gaps in: High-performing schools	English language Low-performing schools	proficiency gaps in: High-performing schools
North Carolina	-1	-16	-5	-19
Kentucky	0	-13	-3	-14
Wisconsin	-7	-18	-6	-17
Illinois	-4	-15	-5	-14
Minnesota	-14	-22	-11	-21

Note: We report gaps as negative percentage point values when subgroups have proficiency below their overall schools.
Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

In many states, the achievement gaps in the highest-performing schools are considerably larger than in the lowest-performing schools. In the highest-performing schools in Massachusetts, for example, black students have average math proficiency rates more than 20 percentage points below their school's overall proficiency rate. In the lowestperforming schools, the gaps are less than half that amount. In Illinois' highest-performing schools, the Hispanic achievement gap in English language arts is, on average, 14 percentage points below the overall school proficiency rate-more than twice the gap in the lowest-performing schools. In fact, in 17 states, the gaps for Hispanic students in higher-performing schools are at least twice as large as the gaps in lower-performing schools. For black students, this is true in nine states.

Millions of disadvantaged students perform at rates substantially lower than their schools

Nationally, many students in historically disadvantaged subgroups attend schools where the gaps between their performance and their school's performance are relatively small or where their performance is higher than their school's overall. Nevertheless, millions of these students attend schools where the achievement gaps are substantial. Approximately 1.2 million, or more than 60 percent of the black students in our analysis, and around 1 million, or 40 percent of the Hispanic students in our analysis, attend schools with achievement gaps greater than 10 percentage points. For other subgroups, these numbers are even higher. Around 2.8 million low-income students attend such schools, or more than 40 percent of low-income students in our analysis. In addition, around 2.8 million students with disabilities-more than 90 percent of all such students in our analysis-and more than 1.5 million English language learners—almost 90 per-cent-are in schools with such large gaps.

The percentage of black and Hispanic students attending schools with large achievement gaps—that is to say, greater than 10 percentage points—varies significantly from state to state. In North Carolina, for example, more than 157,000 such students-or almost 70 percent of students in the sample-attend schools with achievement gaps greater than 10 percentage points. In Florida, more than 218,000 black and Hispanic studentsaround 60 percent—attend schools with gaps that high. Of course, direct comparisons of achievement across states are not necessarily meaningful, since states determine their own criteria for student proficiency. Nevertheless, these proficiency gaps still reflect real differences in achievement for millions of students in all states across the country.

Although this report focuses largely on black and Hispanic students, we conducted the same analyses for other student subgroups and found similar results. For example, we found that the achievement gaps in high-performing schools are larger than in low-performing schools for students from low-income families, students with disabilities, and English language learners. In addition, these students often attend schools with achievement gaps greater than 10 percentage points.

Note: Results are similar for English language arts. We report gaps as negative percentage point values when subgroups have proficiency below their overall schools.

Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

Note: Our analysis identifies states where gaps are greater in both math and English language arts.
Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

Just as achievement gaps exist in schools that are overall high performing as well as in those that are low performing, substantial gaps exist in smaller and less diverse states in addition to larger and more diverse states. In states with smaller black and Hispanic populations, the concentration of those students in schools with large gaps is often higher than in states with larger populations of those students. In Idaho, for example, every single one of the 250 black students in our analysis attended a school with an achievement gap of more than 10 percentage points. ${ }^{10}$ The same is true for every one of the 90 black students we looked at in Wyoming. In Maine, 88 percent of the 160 Hispanic students in our analysis were in schools with substantial gaps. Similarly, in New Hampshire, 90 percent of the approximately 2,400 Hispanic students in the state attend such schools.

TABLE 2
States where more than 90 percent of black students attend schools with large achievement gaps

Estimated number and percentage of students in study schools with proficiency gaps greater than 10 percentage points

State	Estimated number of black students in schools with large proficiency gaps	Percentage of all black students in study schools with large proficiency gaps
Wyoming	90	100%
Idaho	250	100%
Vermont	270	92%
North Dakota	810	93%
New Hampshire	630	91%

Source: Authors' analysis of data from U.S. Department of Education,"State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

This analysis shows that all states struggle with closing achievement gaps and provides further evidence of the need for a clear and strong federal role in ensuring that accountability systems identify and direct support toward schools where groups of students are not making progress. The problem is particularly acute in states with smaller populations of disadvantaged students. These students likely would be overlooked in a statewide accountability system that is based on overall school performance, and large achievement gaps would be ignored.

Conclusion

Holding states, districts, and schools accountable for improving the performance of all groups of students remains critical to improving the quality of education in America. Yet simply recycling past policies is not the answer. It is crucial to move away from No Child Left Behind's practice of naming and shaming schools and to begin to build a more comprehensive system of accountability that requires states and districts to take greater ownership of the education of underperforming students and student subgroups.

Effective accountability systems include two key elements: a way of identifying schools and districts where all students or groups of students are struggling and a system to deliver supports and interventions where they are needed. A reauthorized Elementary and Secondary Education Act should allow states the flexibility to use multiple measures of performance to identify schools that are low performing but still should ensure that schools cannot receive high ratings when specific subgroups of students are persistently not making progress. For example, Congress could require that a school's rating under the state's accountability system be lowered if one or more subgroups are not making sufficient academic progress over a number of years. Such a provision would address concerns about some current state accountability systems that allow schools to be rated highly despite low performance of specific groups of students. ${ }^{11}$

When considering how to direct supports and interventions, the ESEA should recognize that typically, schools themselves are not solely responsible for their struggles. Furthermore, many of the remedies to underperformance—improving teacher quality, ${ }^{12}$ investing more resources, and providing additional supports ${ }^{13}$ —require state and district action. Therefore, a reauthorized ESEA should hold states and districts accountable for taking action to improve schools and close achievement gaps. Simply put, improving the quality of education afforded all students, but particularly disadvantaged subgroups of students, requires significant district and state support, and accountability systems should recognize this fact.

CAP strongly recommends that Congress require states and districts to assume greater roles to improve academic performance for all groups of students. Specifically, Congress should require that districts where a significant number of schools have consistently low overall performance or underperforming student subgroups must provide greater support and evidence-based interventions to these schools. Districts should be required to put in place practices and systems that have evidence of success, such as early warning indicator systems to identify when students are off track; ${ }^{14}$ increased instructional time; ${ }^{15}$ a more rigorous approach to building the human capital of teachers and administrators; ${ }^{16}$ high-dosage tutoring; frequent use of data to inform instruction; and a culture of high expectations for students. ${ }^{17}$

If district efforts are insufficient to improve achievement, Congress should require states to intervene directly in the district-or, in cases of extreme low performance, the schools—and to take significant steps to support academic growth and ensure that all students—regardless of race, class, disability, or national origin—receive a high-quality education that prepares them for college and career. Anything less abandons the civil rights promise of the original ESEA and fails to support the millions of students who have the greatest needs.

Scott Sargrad is the Director for Standards and Accountability on the Education Policy team at the Center for American Progress. Max Marchitello is a Policy Analyst for the Pre-K-12
Education Policy team at the Center. Robert Hanna is a Senior Policy Analyst at the Center.

Appendix

Methodology

We analyzed proficiency rates for more than 20,000 schools across 50 states and the District of Columbia to identify schools where subgroup proficiency rates were substantially below those of their overall schools. We used the U.S. Department of Education's EDFacts data set, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data." ${ }^{18}$ This data set includes school-level achievement data from state tests for several groups of students, including students with disabilities and students with limited English proficiency. This data set presents results for schools around the nation during one school year, 2012-13.

For this study, we restricted our analysis to those schools across the nation with at least 20 students who took state tests from each subgroup and at least 20 other students who were tested. For example, our findings for black students only consider schools with at least 20 white tested students and 20 black tested students. For low-income students, we only include schools with at least 20 tested students who were not eligible for free or reduced-price lunches. Currently, many states require that at least 20 students per subgroup be represented in order to include those subgroups for accountability purposes. While this approach excludes small schools and highly segregated schools from the analysis, it is necessary to analyze within-school achievement gaps, since small schools and schools without multiple subgroups by definition cannot have achievement gaps.

Given these criteria for eligibility, our analysis included different numbers of schools for different groups of students. We included 26,039 schools in our analysis of the achievement of black students, 34,714 schools in our analysis of Hispanic students, and 24,271 schools in our analysis of students with limited English proficiency. Our school sample sizes were much larger for students with disabilities-66,026 schools-and low-income students-60,065 schools. In determining whether an achievement gap exists at a given school, we compared the proficiency rates of subgroup students with the overall performance of their school. This is only one of many measures of the achievement gap, ${ }^{19}$ but we believe this approach is relevant to the current debate around ESEA accountability and is illustrative of the broader issues related to achievement gaps. Throughout this report, we refer to a school as having an achievement gap when subgroup students perform below their school's overall performance in either English language arts or math.

Our comparisons of high- and low-performing schools should be interpreted with some caution for states with small subgroup populations. In some states, we were only able to include a small set of schools, and some averages could have wide margins of error.

TABLE A1
Breadth of large achievement gaps, by state and racial subgroup
Estimated number and percentage of black and Hispanic students in schools with achievement gaps greater than 10 percentage points
$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { Estimated } \\ \text { number of black } \\ \text { students in }\end{array} & \begin{array}{c}\text { Estimated number } \\ \text { of Hispanic } \\ \text { schools with large } \\ \text { achievement gaps }\end{array} & \begin{array}{c}\text { (lack students in in } \\ \text { study schools }\end{array} & \begin{array}{c}\text { Percentage of all } \\ \text { schools with large } \\ \text { achievement gaps }\end{array} \\ \hline \text { Hispanic students } \\ \text { in study schools }\end{array}\right]$

State	Estimated number of black students in schools with large achievement gaps	Percentage of all black students in study schools	Estimated number of Hispanic students in schools with large achievement gaps	Percentage of all Hispanic students in study schools
North Dakota	810	92\%	240	68\%
Ohio	34,240	51\%	5,960	35\%
Oklahoma	12,770	84\%	9,750	61\%
Oregon	2,830	94\%	36,250	85\%
Pennsylvania	33,630	66\%	21,760	68\%
Rhode Island	760	35\%	2,620	47\%
South Carolina	61,500	60\%	6,170	43\%
South Dakota	770	97\%	690	59\%
Tennessee	35,080	67\%	9,530	61\%
Texas	85,430	55\%	44,670	12\%
Utah	430	74\%	24,730	72\%
Vermont	270	93\%	0	0\%
Virginia	70,250	83\%	36,160	79\%
Washington	12,150	80\%	49,880	69\%
West Virginia	3,210	78\%	230	48\%
Wisconsin	15,250	71\%	16,740	65\%
Wyoming	90	100\%	2,080	54\%

Source: Authors' analysis of data from U.S. Department of Education,"State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

TABLE A2

Breadth of large achievement gaps, by state and subgroup

Estimated number and percentage of students in schools with achievement gaps greater than 10 percentage points for students with disabilities, students with limited English proficiency, and low-income students

State	Estimated number of students with disabilities in schools with large achievement gaps	Percentage of all students with disabilities in study schools	Estimated number of students with limited English proficiency in schools with large achievement gaps	Percentage of all students with limited English proficiency in study schools	Estimated number of low-income students in schools with large achievement gaps	Percentage of all low-income students in study schools
Alabama	37,170	99\%	2,610	95\%	13,920	12\%
Alaska	8,250	100\%	4,630	94\%	8,380	65\%
Arizona	65,450	100\%	19,820	100\%	29,840	16\%
Arkansas	24,370	100\%	7,950	75\%	17,740	24\%
California	287,820	91\%	555,480	96\%	306,550	38\%
Colorado	43,510	100\%	42,710	93\%	69,000	64\%
Connecticut	28,980	96\%	9,200	100\%	23,320	43\%
Delaware	8,750	99\%	1,640	97\%	7,280	50\%
District of Columbia	3,780	90\%	1,670	99\%	1,590	34\%
Florida	179,300	98\%	98,400	98\%	200,730	52\%
Georgia	89,620	90\%	15,070	70\%	11,800	6\%
Hawaii	8,950	100\%	5,070	100\%	10,180	29\%
Idaho	10,960	99\%	3,630	99\%	9,460	25\%
Illinois	126,380	98\%	62,960	99\%	160,860	59\%
Indiana	65,590	94\%	15,190	90\%	36,940	38\%
Iowa	23,430	100\%	6,900	89\%	43,200	70\%
Kansas	20,950	88\%	6,310	76\%	12,350	33\%
Kentucky	32,470	89\%	3,700	86\%	69,510	44\%
Louisiana	31,650	93\%	2,500	91\%	12,330	12\%
Maine	12,630	100\%	1,510	98\%	18,080	52\%
Maryland	41,730	97\%	13,050	83\%	34,190	34\%
Massachusetts	79,420	100\%	21,300	94\%	65,170	71\%
Michigan	65,210	83\%	21,070	92\%	100,120	51\%
Minnesota	51,280	99\%	22,700	93\%	102,550	89\%
Mississippi	22,640	99\%	1,160	77\%	28,820	36\%
Missouri	47,500	94\%	6,000	88\%	79,860	53\%
Montana	4,560	99\%	1,040	91\%	11,250	50\%
Nebraska	18,680	97\%	6,200	83\%	23,600	57\%
Nevada	23,330	100\%	28,860	91\%	22,400	32\%
New Hampshire	13,020	100\%	1,920	98\%	15,240	67\%
New Jersey	115,980	99\%	12,830	93\%	63,480	45\%
New Mexico	22,310	100\%	23,320	88\%	20,890	42\%

State	Estimated number of students with disabilities in schools with large achievement gaps	Percentage of all students with disabilities in study schools	Estimated number of students with limited English proficiency in schools with large achievement gaps	Percentage of all students with limited English proficiency in study schools	Estimated number of low-income students in schools with large achievement gaps	Percentage of all low-income students in study schools
New York	140,340	89\%	51,840	98\%	127,040	62\%
North Carolina	96,760	98\%	30,570	93\%	177,190	54\%
North Dakota	3,240	86\%	660	90\%	7,210	64\%
Ohio	119,290	97\%	8,650	80\%	55,750	22\%
Oklahoma	48,630	97\%	11,410	93\%	27,530	46\%
Oregon	34,750	98\%	21,140	99\%	49,170	62\%
Pennsylvania	137,490	99\%	16,430	100\%	132,660	59\%
Rhode Island	9,030	99\%	3,310	98\%	8,890	50\%
South Carolina	50,840	100\%	7,110	62\%	50,320	34\%
South Dakota	5,500	99\%	1,250	95\%	10,160	56\%
Tennessee	49,700	83\%	6,680	95\%	79,980	45\%
Texas	234,780	88\%	264,240	67\%	110,910	19\%
Utah	39,380	98\%	11,820	98\%	31,300	45\%
Vermont	4,110	99\%	300	94\%	9,070	61\%
Virginia	89,170	99\%	35,680	99\%	121,200	74\%
Washington	62,070	100\%	33,940	100\%	91,320	61\%
West Virginia	16,720	100\%	180	55\%	35,780	81\%
Wisconsin	43,200	87\%	13,090	89\%	89,480	64\%
Wyoming	5,420	100\%	440	79\%	5,860	38\%

Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

TABLE A3
Achievement gaps in highest- and lowest-performing schools for black students, by state

State	Math proficiency gaps in:		English language arts proficiency gaps in:	
	Low-performing schools	High-performing schools	Low-performing schools	High-performing schools
Alabama	-10	-7	-7	-5
Alaska	-13	-13	-5	-8
Arizona	-10	-14	-7	-8
Arkansas	-9	-12	-9	-8
California	-11	-15	-6	-12
Colorado	-9	-17	-6	-14
Connecticut	-7	-11	-4	-8
Delaware	-12	-11	-7	-10
District of Columbia	-8	-9	-6	-11
Florida	-10	-18	-9	-17
Georgia	-7	-4	-3	-1
Hawaii	-9	-11	0	-3
Idaho	-38	-35	-16	-19
Illinois	-13	-25	-10	-21
Indiana	-10	-12	-9	-10
lowa	-16	-28	-13	-25
Kansas	-10	-11	-8	-6
Kentucky	-8	-24	-8	-23
Louisiana	-7	-8	-5	-5
Maine	-23	-26	-19	-23
Maryland	-10	-7	-6	-6
Massachusetts	-6	-24	-3	-10
Michigan	-6	-25	-8	-17
Minnesota	-15	-26	-10	-26
Mississippi	-7	-9	-7	-13
Missouri	-10	-27	-9	-26
Montana				
Nebraska	-12	-20	-9	-13
Nevada	-13	-16	-11	-15
New Hampshire	-15	-29	-6	-12
New Jersey	-11	-14	-8	-10
New Mexico	-3	-13	0	-7
New York	-5	-13	-4	-10
North Carolina	-8	-25	-8	-23
North Dakota	-29	-15	-25	-16
Ohio	-7	-14	-5	-9
Oklahoma	-11	-12	-9	-11

| | $\begin{array}{c}\text { Math proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array}$ | | $\begin{array}{c}\text { High-performing } \\ \text { schools }\end{array}$ |
| :--- | :---: | :---: | :---: | \(\left.\left.\begin{array}{c}English language arts proficiency gaps in:

Low-performing

schools\end{array}\right) $$
\begin{array}{c}\text { High-performing } \\
\text { schools }\end{array}
$$\right]\)

Notes: We leave cells blank if they represent only one school or if there are fewer than four study schools in the state for this subgroup. We report gaps as negative percentage point values when subgroups have proficiency below their overall schools.
Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

TABLE A4
Achievement gaps in highest- and lowest-performing schools for Hispanic students, by state

| | Math proficiency gaps in:
 Low-performing
 schools | | High-performing
 schools |
| :--- | :---: | :---: | :---: | | English language arts proficiency gaps in: |
| :---: |
| State |

State	Math proficiency gaps in:		English language arts proficiency gaps in:	
	Low-performing schools	High-performing schools	Low-performing schools	High-performing schools
lowa	-3	-10	-7	-12
Kansas	-3	-4	-3	-3
Kentucky	0	-13	-3	-14
Louisiana	3	-2	0	-1
Maine	-10	-12	-1	-12
Maryland	-4	-4	-3	-3
Massachusetts	-8	-15	-8	-10
Michigan	-3	-13	-3	-9
Minnesota	-14	-22	-11	-21
Mississippi	2	-4	-2	-9
Missouri	-1	-9	-4	-9
Montana	-10	-16	-8	-4
Nebraska	-7	-11	-6	-7
Nevada	-4	-6	-3	-7
New Hampshire	-12	-18	-10	-15
New Jersey	-5	-10	-6	-7
New Mexico	-3	-7	-2	-6
New York	-4	-12	-4	-9
North Carolina	-1	-16	-5	-19
North Dakota	-11	-12	-13	-11
Ohio	0	-9	0	-7
Oklahoma	-3	-5	-4	-6
Oregon	-10	-15	-11	-12
Pennsylvania	-6	-11	-5	-13
Rhode Island	-5	-15	-3	-9
South Carolina	0	-6	-4	-6
South Dakota	-9	-14	-7	-12
Tennessee	-1	-7	-5	-14
Texas	-2	-3	-3	-4
Utah	-10	-13	-9	-10
Vermont				
Virginia	-4	-8	-4	-7
Washington	-9	-13	-9	-10
West Virginia	-8	-8	-11	-9
Wisconsin	-7	-18	-6	-17
Wyoming	-11	-9	-8	-12

Notes: We leave cells blank if they represent only one school or if there are fewer than four study schools in the state for this subgroup. We report gaps as negative percentage point values when subgroups have proficiency below their overall schools.
Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

TABLE A5
Achievement gaps in highest- and lowest-performing schools for students with disabilities, by state
$\left.\left.\begin{array}{lc|cc}\hline & \text { Math proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array} \quad \begin{array}{c}\text { High-performing } \\ \text { schools }\end{array} \quad \begin{array}{c}\text { English language arts proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array}\right] \begin{array}{c}\text { High-performing } \\ \text { schools }\end{array}\right]$

| | $\begin{array}{c}\text { Math proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array}$ | | $\begin{array}{c}\text { High-performing } \\ \text { schools }\end{array}$ |
| :--- | :---: | :---: | :---: | \(\left.\left.\begin{array}{c}English language arts proficiency gaps in:

Low-performing

schools\end{array}\right) $$
\begin{array}{c}\text { High-performing } \\
\text { schools }\end{array}
$$\right]\)

Notes: We leave cells blank if they represent only one school or if there are fewer than four study schools in the state for this subgroup. We report gaps as negative percentage point values when subgroups have proficiency below their overall schools.
Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

TABLE A6
Achievement gaps in highest- and lowest-performing schools for students with limited English proficiency, by state*

| | $\begin{array}{c}\text { Math proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array}$ | | $\begin{array}{c}\text { High-performing } \\ \text { schools }\end{array}$ |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}English language arts proficiency gaps in:

Low-performing

schools\end{array} \quad $$
\begin{array}{c}\text { High-performing } \\
\text { schools }\end{array}
$$\right]\)
$\left.\left.\begin{array}{lc|cc}\hline & \text { Math proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array} \quad \begin{array}{c}\text { High-performing } \\ \text { schools }\end{array} \quad \begin{array}{c}\text { English language arts proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array}\right] \begin{array}{c}\text { High-performing } \\ \text { schools }\end{array}\right]$

Notes: We leave cells blank if they represent only one school or if there are fewer than four study schools in the state for this subgroup. We report gaps as negative percentage point values when subgroups have proficiency below their overall schools.
Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.

TABLE A7
Achievement gaps in highest- and lowest-performing schools for low-income students, by state
$\left.\left.\begin{array}{lcc|cc}\hline & \text { Math proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array} \quad \begin{array}{c}\text { High-performing } \\ \text { schools }\end{array} \quad \begin{array}{c}\text { English language arts proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array}\right] \begin{array}{c}\text { High-performing } \\ \text { schools }\end{array}\right]$

| | $\begin{array}{c}\text { Math proficiency gaps in: } \\ \text { Low-performing } \\ \text { schools }\end{array}$ | | $\begin{array}{c}\text { High-performing } \\ \text { schools }\end{array}$ |
| :--- | :---: | :---: | :---: | \(\left.\left.\begin{array}{c}English language arts proficiency gaps in:

Low-performing

schools\end{array}\right) $$
\begin{array}{c}\text { High-performing } \\
\text { schools }\end{array}
$$\right]\)

Notes: We leave cells blank if they represent only one school or if there are fewer than four study schools in the state for this subgroup. We report gaps as negative percentage point values when subgroups have proficiency below their overall schools.
Source: Authors' analysis of data from U.S. Department of Education, "State Assessments in Reading/Language Arts and Mathematics: Restricted Use Files for School Year 2012-13, Provisional Data," 2015. Received by request from the U.S. Department of Education.
*Correction, October 30, 2015: The title of Table A6 has been updated to accurately reflect that it presents data for students with limited English proficiency.

Endnotes

1 Student Success Act, H. Rept. 114-24, 114 Cong. 1 sess. (Library of Congress, 2015), available at https://www.congress gov/bill/114th-congress/house-bill/5/text?q=\{\%22search\% 22\%3A[\%22
%22hr5
%22\%22]\}\&resultIndex=1; Every Child Achieves Act, 114 Cong. 1 sess. (Government Printing Office, 2015), available at https://www.govtrack.us/congress/ bills/114/s1177/text.

2 Juliet Eliperin, Lyndsey Layton, and Emma Brown, "U.S Education Secretary Arne Duncan to step down at end of year," The Washington Post, October 2, 2015, available at https://www.washingtonpost.com/news/education/ wp/2015/10/02/education-secretary-arne-duncan-report-edly-will-step-down-at-end-of-year/; Jennifer Steinhauer, "John Boehner, House Speaker, Will Resign From Congress," The New York Times, September 25, 2015, available at http:// www.nytimes.com/2015/09/26/us/john-boehner-to-resign-from-congress.html.

3 Lauren Camera, "ESEA Rewrite: What to Expect From House Senate Conference," Politics K-12, July 20, 2015, available at http://blogs.edweek.org/edweek/campaign-k-12/2015/07/ esea_rewrite_what_to_expect_du.html.

4 No Child Left Behind Act, H. Rept. 107-63, 107 Cong. 1 sess (Library of Congress, 2015), available at https://www. congress.gov/bill/107th-congress/house-bill/1.

5 Student Success Act; Every Child Achieves Act
6 An ACT concerning education, Public Act 099-0193 (Illinois General Assembly, 2015), available at http://www.ilga.gov/ legislation/publicacts/99/PDF/099-0193.pdf.

7 Illinois Report Card, "Stay Informed and Get Engaged," available at http://www.illinoisreportcard.com/ (last accessed October 2015); Progress Illinois, "New School Rating System to Roll Out in Illinois," Progress Illinois, October 5, 2015, available at http://www.progressillinois.com/news/con-tent/2015/10/05/new-school-rating-system-roll-out-illinois.

8 In the top-performing quartile of schools based on overall achievement, the math proficiency rate for Hispanic students is around 8 percentage points below the school's proficiency rate. In the bottom quartile of schools, the achievement gap for Hispanic students is around 4 percentage points below the school's proficiency rate. We found similar results for both black and Hispanic students in English language arts.

9 Here, we consider both black and Hispanic subjects in both subject areas. We identified schools with larger gaps in high-performing schools than in lower-performing schools for both subgroups in both math and English language arts.

10 Per Institute of Education Sciences guidelines, total counts are rounded to the nearest tenth throughout the report, including in the figures.

11 Natasha Ushomirsky, David Williams, and Daria Hall, "Making Sure All Children Matter: Getting School Accountability Signals Right" (Washington: The Education Trust, 2015), available at http://edtrust.org/wp-content/uploads/2013/10/ All_Children_Matter.pdf.

12 Elizabeth Leisy Stosich, "3 Top-Down Approaches to Improving Teacher Capacity," Learning Deeply, July 23, 2015, available at http://blogs.edweek.org/edweek/learn-ing_deeply/2015/07/top-down_support_for_bottomup_reform_state_efforts_to_grow_educator_capacity_ from_within.html; C. Kirabo Jackson and Elias Bruegmann, "Teaching Students and Teaching Each Other:The Importance of Peer Learning for Teachers." Working Paper 15202 (National Bureau of Economic Research, 2009), available at http://www.nber.org/papers/w15202.

13 U.S. Department of Education, "U.S. Education Secretary Announces Guidance to Ensure All Students Have Equal Access to Educational Resources," Press release, October 1, 2014, available at http://www.ed.gov/news/press-releases/ us-education-secretary-announces-guidance-ensure-all-students-have-equal-access-educational-resources; Robert Hanna, Max Marchitello, and Catherine Brown, "ESEA Reauthorization: Comparable but Unequal" (Washington: Center for American Progress, 2015), available at https://www.americanprogress.org/issues/education/ report/2015/03/11/107985/comparable-but-unequal/.

14 Farah Z. Ahmad and Tiffany D. Miller, "The High Cost of Truancy" (Washington: Center for American Progress, 2015), available at https://www.americanprogress.org/issues/race/ report/2015/08/25/109863/the-high-cost-of-truancy/.

15 Tiffany D. Miller, "All Hands on Deck: How Expanded Learning Time and Community Partners Can Benefit Students," Center for American Progress, May 19, 2014, available at https://www.americanprogress.org/issues/education/ news/2014/05/19/89244/all-hands-on-deck-how-expand-ed-learning-time-and-community-partners-can-benefit-students-2/.

16 William L. Sanders and June Rivers, "Cumulative and Residual Effects of Teachers on Future Student and Academic Achievement" (Knoxville, TN: University of Tennessee's Value-Added Assessment Center, 1996), available at http:// www.cgp.upenn.edu/pdf/Sanders_Rivers-TVASS_teacher\ effects.pdf; Steven G. Rivkin, Eric A. Hanushek, and John F. Kain,"Teachers, Schools, and Academic Achievement," Econometrica 73 (2) (2005): 417-458, available at http://www.econ.ucsb.edu/~jon/Econ230C/HanushekRivkin.pdf.

17 Ulrich Boser, Megan Wilhelm, and Robert Hanna,"The Power of the Pygmalion Effect:Teachers Expectations Strongly Predict College Completion" (Washington: Center for American Progress, 2014), available at https://www.americanprogress. org/issues/education/report/2014/10/06/96806/the-power-of-the-pygmalion-effect/.

18 Available by request from the U.S. Department of Education. For more information on EDFacts data sets, see U.S. Department of Education, "The EDFacts Initiative," available at http://www2.ed.gov/about/inits/ed/edfacts/index.html (last accessed October 2015).

19 One common measure of the achievement gap compares the average test scores of two different groups, such as the black-white achievement gap. Results from the National Assessment of Educational Progress are presented this way See, for example, The Nation's Report Card, "Have achievement gaps changed?", available at http://www.nationsre-portcard.gov/reading_math_2013/\#/achievement-gaps (last accessed October 2015). See the following resource for a discussion of differences between test score gaps and proficiency gaps: Ronald Ferguson and others, "How High Schools Become Exemplary" (Cambridge, MA: The Achievement Gap Initiative, 2009), pp. 10-11, available at http:// www.agi.harvard.edu/events/2009Conference/2009AGICon ferenceReport6-30-2010web.pdf.

